
Synthesizing Open Worlds with Constraints using
Locally Annealed Reversible Jump MCMC

– Supplemental Materials

Yi-Ting Yeh
Stanford University

Lingfeng Yang
Stanford University

Matthew Watson
Stanford University

Noah D. Goodman
Stanford University

Pat Hanrahan
Stanford University

In this document, we give the formulations of the distributions used
in the main text.

1 Formulating Soft Constraints

Most of the constraints used in the examples employ modulated
Gaussian and sigmoid functions to express soft constraints over
real-valued scoring functions (Figure 1). Here, we describe them
in detail.

Let N (x, µ, σ2) be a Gaussian density with mean µ and variance
σ2 evaluated at x, and Sig(x;h) = 1

1+e−hx be a sigmoid function
with h controlling the steepness. We formulate soft versions of
logical predicates over real numbers as follows. All such values are
computed in log space.

Eq(x, y, σ2) =
N (0, ‖x− y‖, σ2)

N (0, 0, σ2)

Greater(x, y, h) = Sig(x− y;h)

Less(x, y, h) = Sig(y − x;h)

Range(x, y, z, h) = Greater(x, z, h)Less(y, z, h).

The composition of several such functions yields a constraint whose
values range from 0 (maximally unsatisfied) to 1 (maximally satis-
fied).

2 Simple String Example

Here, we give more details on the synthetic distributions over
strings used in the paper to compare statistical efficiency of LARJ-
MCMC versus other algorithms. We used two such synthetic dis-
tributions, both over strings S = S1S2 . . . SN of different lengths
consisting of random characters. It is feasible to calculate the nor-
malization constant of these distributions analytically. Following
are descriptions of the domains and factors of each distribution. Let
N be the current number of letters in the string.

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8

0.8

1.6

2.4

3.2

0.8-0.8 0

0.8

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8

0.8

1.6

2.4

3.2

0.8

0.8-0.8

(b) y = Sig(x; 3.0)(a) y = N (x; 0, 0.1)

x

y y

x

Figure 1: Gaussian and sigmoid functions used in designing soft
constraints.

(a) global scope (b) circular consecutive-2 scopes

(c) opposing scopes (even) (d) opposing scopes (odd)

Figure 2: Visualization of the scopes being used in the simple string
example.

2.1 A distribution with global constraints

Domain. {’a’,’b’}. N can be 5 ∼ 10.

Scope and factor. There is one global factor whose scope is the
entire string S (see Figure 2(a)). This factor constrains the string to
be all a’s or all b’s depending on the length:

f(S) =

Eq(‖S‖, ‖{Si|Si = ’a’}‖, 0.2) if ‖S‖ is odd
Eq(‖S‖, ‖{Si|Si = ’b’}‖, 0.2) if ‖S‖ is even

2.2 A distribution with local constraints

Domain. {’a’,’b’,’c’}. N can be 6 ∼ 9.

Scopes and factors.

• One factor is applied over each pair of circular consecutive
characters {Si, Si+1 mod N}N−1

i=0 . This scoping is illustrated
in Figure 2(b). This factor constrains each such pair to be
different, using the following factor function:

f(Si, Sj) =

0 if Si 6= Sj

log(0.2) if Si = Sj

• Another factor is applied over pairs of opposing characters
{Si, SN−i−1}bN/2c−1

i=0 (with an additional pair {S0, SbN/2c}
if N is odd). This scoping is illustrated in Figure 2(c)-(d).
The factor constrains all such pairs to be the same, using the
following factor function:

f(Si, Sj) =

0 if Si = Sj

log(0.05) if Si 6= Sj

(a) shelf

pos
φ

(b) types of tables

0

1

2

3

4
(c) table group

order = 4

θ
r

pos

(d) sofa

pos

vpos

vpoly

Figure 3: Visualization of variables used in cafe layout example.

3 Cafe Layout

3.1 Random variables

Each piece of furniture or a group of tablesO contains the following
attributes:

• O.pos ∈ R2 (Figure 3(a, c, d)).

• O.orientation = φ ∈ {0, 1
12
π, . . . , 2π} for table groups,

{0, 1
8
π, . . . , 2π} for sofas and shelves. (see Figure 3(a)).

• O.type ∈ {0, . . . , 4} for table groups, {0, 1} for sofas. (see
Figure 3(b)).

Each group of tables also includes the following attributes (Fig-
ure 3(c)):

• O.offset = (r, θ) ∈ R+ × {0, 1
4
π, . . . , 2π}.

• O.order ∈ {2, . . . , 10}.

Sofas contain these additional attributes (Figure 3(d)):

• O.vpoly to denote view area.

• O.vpos to denote position of view area.

Figure 3 shows how these parameters affect the layout visually.

3.2 Constraint specification

Figure 4 shows the factor functions used in the cafe layout exam-
ple. The following is pseudocode for certain functions used in the
constraints.

// bbox: gets the axis-aligned bounding box of an object.
// rotate_bbox: rotates the points of a bbox about the

origin by the given angle.
Spacing(O) {

b = bbox(rotate_bbox(bbox(O), O.orientation));
r, theta = O.offset;
spacing = max(abs(b.width - r * cos(theta)), abs(b.

height - r * sin(theta)))
return spacing;

}

4 Golf Course Layout

4.1 Random variables

Each course is parameterized by the following entities (see Fig-
ure 5):

• The path of the course is a list of Pi (two points per hole; 18
points in a 9 hole course)

• Each hole contains a start, middle, and end control point. The
start and end of each hole correspond to a pair of path points
Pi.

• Greens and fairways are defined by blob control point objects,
each of which has a radius and position attribute.

• Flags Fi contain a single position attribute.

• Traps Ti are a collection of blob control points, all sharing a
common radius.

4.2 Constraint specification

Figure 6 contains a list of factor functions used in the golf course
layout example. The following is pseudocode for the functions
used. Straight(p1, p2, p3) computes the magnitude of the
mean curvature for a discrete curve segment [Sullivan 2006].

OutsideBlob(pos, blob, size_param){
return Less(0.5, ImplicitShapeFn(pos, blob.

control_points, size_param), 100);
}

InsideBlob(pos, blob, size_param){
return Greater(0.5, ImplicitShapeFn(pos, blob.

control_points, size_param), 100);
}

ImplicitShapeFn(pos, control_points, size_param){
val = 1.0;
for(cp in control_points){
dist = d(pos, cp.pos);
val -= (4/9)*(dist/(cp.rad + size_param))ˆ6 - (17/9)

(dist/(cp.rad + size_param))ˆ4 + (22/9)(dist/(
cp.rad + size_param))ˆ2;

}
return val;

}

AvoidIntersection(s1, s2, line_width){
a1 = s1.first; a2 = s1.second;
b1 = s2.first; b2 = s2.second;
if(Intersecting(a1, a2, b1, b2){
cross = IntersectionPoint(a1, a2, b1, b2);
amid = Midpoint(a1, a2);
bmid = Midpoint(b1, b2);
dist_to_midpts = d(cross, amid) + d(cross, bmid);
max_dist_to_midpts = d(a1, amid) + d(b1, bmid);
intersect_factor = 2 - dist_to_midpts /

max_dist_to_midpts; // more intersection if
closer to midpoint

Greater(intersect_factor * 2 * line_width, 0, 1.0);
}
else{ // mutual minimum distance from pt to line
dist = min(DistPtLine(a1, b1, b2), DistPtLine(a2, b1,

b2),
DistPtLine(b1, a1, a2), DistPtLine(b2, a1, a2)

);
Greater(2 * line_width, dist, 1.0);

}
}

Straight(p1, p2, p3) {
return discrete_curvature(p1, p2, p3);

}

References

SULLIVAN, J. M. 2006. Curvature measures for discrete surfaces.
In ACM SIGGRAPH 2006 Courses, ACM, New York, NY, USA,
SIGGRAPH ’06, 10–13.

ScopeDescription WeightFactor Function

Eq

�
0,

A(P (Oi) ∩ P (Oj))
min{A(P (Oi)), A(P (Oj))} , 0.1

�

Eq

�
0,

A(P (Oi)− P (R))
A(P (Oi))

, 0.1
�

Eq (0, sin(Θ(Oi, W)), 0.1)

Eq (80, Spacing(Oi), 400)

Eq
�
0, ds(Oi.pos, W), 104

�

If d(Oi, Oj) < 500, then

Eq

�
1,

A(Oi.vpoly ∩Oj .vpoly)
A(Oi.vpoly)

, 0.1
�

Range (100, 500, d(O2i.pos, O2i+1.pos))

Eq (0, d(O2i.vpos, O2i+1.vpos), 200)

Eq

�
0.6,

A((∪P (Oi)) ∩ P (R))
A(P (R))

, 0.1
�

Eq

�
0.6,

A((∪P (Oi)) ∩ P (Z))
A(P (Z))

, 0.2
�

Eq(2, �{Oi.type|Oi ∈ O}�, 1)

Eq(0, d(
�

A(P (Oi))Oi.pos�
A(P (Oi))

, c), 105)

max{Less (0, dpoly(Oi.pos, Z)) ,
Less (0, dpoly(Oi.endpos, Z))}

40

40

40

30

40

1

1

1

30

30

30

30

1

non-overlap each object pair Oi, Oj

inside room R each object Oi

align to nearest segment W
each table group, shelf,

and plant Oi

spacing within group each table group Oi

distance to nearest segment W each shelf Oi

occupied area in zone Z all sofas O

occupied area in Room R all table groups O

total number of different types all table groups O

encourage conversation each sofa pair Oi, Oj

closeness 1

closeness 2

inside sofa zone Z each sofa Oi

all table groups Obalance w.r.t. point c

1

1

close to sofas S all lamps O Less

�
75, min

Si∈S
dpoly(Oi.pos, P (Si)), 5

�

1

cover all tables, sofas, shelves S

cove all sofas S all lamps O

all plants O
�
Si∈S

Range

�
−1.0, max

Oi∈O
dpoly(Oi.pos, P (Si)), 4

�
�
Si∈S

Range

�
−1.0, max

Oi∈O
dpoly(Oi.pos, P (Si)), 4

�

each sofa pair O2i, O2i+1

each sofa pair O2i, O2i+1

Figure 4: Factor specification for cafe layout examples. P (O) returns the bounding polygon associated with object O, Θ(X,Y) returns the
difference in angle between line segment Y (relative to a global coordinate frame) and the orientation attribute of objectX . A(x) returns the
area of polygon x, and ∪,∩ denote union/intersection operations on polygons. d(x, y) returns the distance from point x to point y. ds(x, s)
returns the distance from point x to line segment s. dpoly(x, p) returns the squared distance from a point x to a polygon p, multiplied by−1 if
the point is inside. Spacing(O) denotes the internal spacing in a table group O, given in the pseudocode. The result of each factor function
is multiplied in log space by its corresponding weight.

(a) path (b) hole (c) green (e) flag(d) fairway (f) sand traps

end

middle

start

Figure 5: Visualization of variables used in the golf course layout example.

Greater (30, DistPoly(Pi, C))

OutsideBlob (Pi, L, 30)

Less (20, d(ti, Pi), 5)

AvoidIntersection (Si, Sj , 40)

5�
n=3

Eq (tn, �{si ∈ S|par(si) = n}�, vn)

Less (15, d(Hi.end, Pi), 1)

InsideBlob (Fi, Gi, 30)

Range (dmin, dmax, L(Si), 1)

Eq

�
36,

�
si∈S

par(si), 5

�

Less(1.2, Straight(Pi, Pj , Pk), 100)

Eq(0, Straight(Hi.start, Hi.mid, Hi.end), 0.2)

Range(ri,min, ri,max, Ri, 1)

Greater (50, d(C(Ti), C(Tj)), 1)

Eq (0, dpath(Pi, Hj), 50)

OusideBlob (Pi, Gi, 60)

Eq (0, d(ti, Pi), 15)

Eq (50, d(ti, Pi), 2500)

Range (17, 37, dpath(Pi, Hj), 15)

inside course C

outside lakes L

distance to target location ti

non-overlap

par distribution for par 3, 4, 5

total par count

length range di,min, di,max

no sharp bends

hole straightness

target size range rimin
, rimax

distance to hole Hi

inside green Gi

distance between traps

outside green Gi

fairway target location ti

distance to hole path Hj

sand trap location ti

distance to hole path Hj

ScopeDescription WeightFactor Function

each control point Pi of path

each flag and each control point Pi

of path, green, and sandtrap

each path end point Pi

path segment pairs Si and Sj

for all path segments S. tn is the
target number of paths with par n

all path segments S

each path segment Si

each consecutive 3
path control points Pi, Pj , Pk

each hole Hi

each control point radius Ri

of green and fairway

each control point Pi of green

each flag Fi

each fairway end point Pi

each fairway control point Pi

each sand trap control point Pi

each control point of sand trap Pi

each sand trap control point Pi

each sand trap pairs Ti, Tj

1

1

1

5

1

1

0.25

1

1

1

1

1

1

1

1

1

1

1

Figure 6: Factor functions used in the golf course layout example. d(x, y) denotes distance between two points. dpath(x, y) denotes the
distance from a point to a path. C(x) denotes the centroid of the control points of object x.

