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In this document, we give the formulations of the distributions used
in the main text.

1 Formulating Soft Constraints

Most of the constraints used in the examples employ modulated
Gaussian and sigmoid functions to express soft constraints over
real-valued scoring functions (Figure 1). Here, we describe them
in detail.

Let N (z, 4, %) be a Gaussian density with mean y and variance
o2 evaluated at x, and Sig(z; h) = He%'w be a sigmoid function
with h controlling the steepness. We formulate soft versions of
logical predicates over real numbers as follows. All such values are
computed in log space.

2 _ N(O. |z~ y]. 0%

Eq(z,y,0

) N(0,0,02)
Greater(x, y, h) = Sig(x — y; h)
Less(x,y, h) = Sig(y — z; h)
Range(z,y, z, h) = Greater(z, z, h)Less(y, z, h).

The composition of several such functions yields a constraint whose
values range from 0 (maximally unsatisfied) to 1 (maximally satis-
fied).

2 Simple String Example

Here, we give more details on the synthetic distributions over
strings used in the paper to compare statistical efficiency of LARJ-
MCMC versus other algorithms. We used two such synthetic dis-
tributions, both over strings S = 5152 ... Sy of different lengths
consisting of random characters. It is feasible to calculate the nor-
malization constant of these distributions analytically. Following
are descriptions of the domains and factors of each distribution. Let
N be the current number of letters in the string.
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(a) y = N(2;0,0.1) (b) y = Sig(;3.0)

Figure 1: Gaussian and sigmoid functions used in designing soft
constraints.
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Figure 2: Visualization of the scopes being used in the simple string
example.

2.1 A distribution with global constraints

Domain. {’a’,’b’}. N canbe 5 ~ 10.

Scope and factor. There is one global factor whose scope is the
entire string S (see Figure 2(a)). This factor constrains the string to
be all a’s or all b’s depending on the length:

a’},0.2)  if||S] is odd
b’ }{],0.2) if ||S]| is even
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2.2 A distribution with local constraints

Domain. {’a’,’b’,’c’}. Ncanbe6 ~ 9.

Scopes and factors.

e One factor is applied over each pair of circular consecutive
characters {S;, Si4+1 mod N} . This scoping is illustrated
in Figure 2(b). This factor constrains each such pair to be
different, using the following factor function:

[0 if S; # 5;
f(S:,85) = { log(0.2) if §; = S;

e Another factor is applied over pairs of opposing characters
{Ss, SN,ifl}iLiV({QJ ~! (with an additional pair {Sp, S\ny2)}
if N is odd). This scoping is illustrated in Figure 2(c)-(d).
The factor constrains all such pairs to be the same, using the
following factor function:

0 if S; = 5;
F(Si, 85) :{ log(0.05)  if S: # S,



GDDG D
GDD

¢
pos < >

(a) shelf (b) types of tables

g

pos
order =

4 ~ j;? 15,
~ LQQ\I\\N/
G

Z N 07

~ \\ /
~ O/, T / \
po\sée Lo __ A

(d) sofa

(c) table group

Figure 3: Visualization of variables used in cafe layout example.

3 Cafe Layout

3.1 Random variables

Each piece of furniture or a group of tables O contains the following
attributes:

e O.pos € R? (Figure 3(a, c, d)).

e O.orientation = ¢ € {0, %71, ..., 2w} for table groups,
{0, éﬂ', ..., 27} for sofas and shelves. (see Figure 3(a)).

e O.type € {0,...,4} for table groups, {0, 1} for sofas. (see
Figure 3(b)).

Each group of tables also includes the following attributes (Fig-
ure 3(c)):

e O.offset = (r,0) € RT x {0, im,...,27}.
e O.order € {2,...,10}.

Sofas contain these additional attributes (Figure 3(d)):
e O.vpoly to denote view area.

e (.vpos to denote position of view area.

Figure 3 shows how these parameters affect the layout visually.

3.2 Constraint specification

Figure 4 shows the factor functions used in the cafe layout exam-
ple. The following is pseudocode for certain functions used in the
constraints.

// bbox: gets the axis-aligned bounding box of an object.
// rotate_bbox: rotates the points of a bbox about the
origin by the given angle.

Spacing (0) {

b = bbox (rotate_bbox (bbox (0), O.orientation));

r, theta = O.offset;

spacing = max(abs(b.width - r » cos(theta)), abs(b.

height - r » sin(theta)))
return spacing;

4 Golf Course Layout

4.1 Random variables

Each course is parameterized by the following entities (see Fig-
ure 5):

e The path of the course is a list of P; (two points per hole; 18
points in a 9 hole course)

e Each hole contains a start, middle, and end control point. The
start and end of each hole correspond to a pair of path points
P;.

e Greens and fairways are defined by blob control point objects,
each of which has a radius and position attribute.
e Flags F; contain a single position attribute.

e Traps 7; are a collection of blob control points, all sharing a
common radius.

4.2 Constraint specification

Figure 6 contains a list of factor functions used in the golf course
layout example. The following is pseudocode for the functions
used. Straight (pl, p2, p3) computesthe magnitude of the
mean curvature for a discrete curve segment [Sullivan 2006].

OutsideBlob (pos, blob, size_param) {
return Less (0.5, ImplicitShapeFn (pos, blob.
control_points, size_param), 100);

}

InsideBlob (pos, blob, size_param) {
return Greater (0.5, ImplicitShapeFn (pos, blob.
control_points, size_param), 100);

}

ImplicitShapeFn (pos, control_points, size_param) {
val = 1.0;
for (cp in control_points) {
dist = d(pos, cp.pos);
val -= (4/9)x(dist/( cp.rad + size_param))”"6 - (17/9
x (dist/ (cp.rad + size_param)) 4 + (22/9)«(dist/(
cp.rad + size_param)) "2;
}
return val;

}

AvoidIntersection(sl, s2, line_width) {
al = sl.first; a2 = sl.second;
bl = s2.first; b2 = s2.second;
if (Intersecting(al, a2, bl, b2){
cross = IntersectionPoint (al, a2, bl, b2);
amid = Midpoint (al, a2);
bmid = Midpoint (b1, b2);
dist_to_midpts = d(cross, amid) + d(cross, bmid);
max_dist_to_midpts = d(al, amid) + d(bl, bmid);
intersect_factor = 2 - dist_to_midpts /
max_dist_to_midpts; // more intersection if
closer to midpoint
Greater (intersect_factor 2 * line_width, 0, 1.0);
}
else{ // mutual minimum distance from pt to line
dist = min(DistPtLine(al, bl, b2), DistPtLine (a2, bl,
b2),
DistPtLine (bl, al, a2), DistPtLine (b2, al, a2)
)i
Greater (2 % line_width, dist, 1.0);
}



Straight (pl, p2, p3) {
return discrete_curvature(pl, p2, p3);

}
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Description Scope Factor Function Weight|
. ) A(P(0:) N P(Oy))
non-overlap each object pair O;, O; E ( Em{AP(0.), AP 0.1 40
. A(P(0s) — P(R))
inside room R each object O; E (0 —_— 22 0.1 40
A(P(05))
. each table group, shelf, " )
align to nearest segment W and plant O, Eq(0,sin(©(0;,W)),0.1) 40
spacing within group each table group O; Eq (80, Spacing(0;), 400) 30
distance to nearest segment 1V each shelf O; Eq (0,ds(0;.pos, W), 10%) 40
. . A((UP(0y)) N P(Z))
occupied area in zone Z all sofas O Eq <U.6, —_————> 0.2 30
A(P(Z))
- . A((UP(05)) N P(R))
occupied area in Room R all table groups O Eq <O 6, ———="=+—-,0.1 30
A(P(R))
total number of different types all table groups O Eq(2,]{0;-type|O; € O}, 1) 30
. > A(P(0;))0;.pos 5
balance w.r.t. point ¢ all table groups O Eq(0,d(=——~+—:0),10°) 30
> A(P(0:)
If d(Oz, O]) < 500, then
encourage conversation each sofa pair O;, O; A(O;.vpoly N O;.vpoly) 1
Eq|1, ,0.1
A(O;.vpoly)
closeness 1 each sofa pair 02i7 OQH,l Rangc (100 500, d(OQi.pOS, 02/,',+1 .pOS)) 1
closeness 2 each sofa pair Os;, O2i41 Eq(0,d(O2;.vpos, O2;41.vpos), 200) 1
L max{Less (0, dpory (0;.pos, Z)) ,
inside sofa zone 7 each sofa O; Less (0, dyor, (O; endpos, 7))} 1
close to sofas S all lamps O Less (75, é“gé dypory(O;.pos, P(S;)), 5) 1
cover all tables, sofas, shelves S all plants O Z Range <—1-07 Dnax dpoty (0;.pos, P(5;)), 4) 1
S;€S '
cove all sofas S all lamps O Z Range (*1-0~, glg‘é d,ng,(O,;.pOS, P(S), 4) 1
S;€8 ‘

Figure 4: Factor specification for cafe layout examples. P(O) returns the bounding polygon associated with object O, ©(X,Y’) returns the
difference in angle between line segment Y (relative to a global coordinate frame) and the orientation attribute of object X. A(x) returns the
area of polygon x, and U, N denote union/intersection operations on polygons. d(x,y) returns the distance from point x to point y. ds(x, s)
returns the distance from point x to line segment s. dpoiy (x, p) returns the squared distance from a point x to a polygon p, multiplied by —1 if
the point is inside. Spacing(O) denotes the internal spacing in a table group O, given in the pseudocode. The result of each factor function
is multiplied in log space by its corresponding weight.
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Figure 5: Visualization of variables used in the golf course layout example.
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Description Scope Factor Function Weight
inside course C' each control point F; of path Greater (30, DistPoly(P;,C)) 1
outside lakes L each ﬂaff%’;fhftrzgin;‘g fggt‘rf;ﬁ OutsideBlob (P;, L,30) 1
distance to target location ¢; each path end point P; Less (20,d(t;, P;),5) 1
non-overlap path segment pairs S; and S AvoidIntersection (S;, Sj,40) 5
par distribution for par 3, 4, 5 tf;)rl’gilrf)l?rtrﬁlbseig;l;ztt;ssi)vti;Lhi;;lsz ”i Eq (tn, |[{s: € Slpar(s;) = n}||,vns) 1
total par count all path segments S Eq (36, Z par(s;), 5> 1
s;€S
length range d; min, di,maz each path segment S; Range (dmin, dmaz, L(S;), 1) 0.25
no sharp bends path controeia;(})lircl;n;%?l]l;:‘j;i Less(1.2, Straight(P;, P;, Py),100) 1
hole straightness each hole H; Eq(0, Straight(H,;.start, H;.mid, H;.end), 0.2) 1
target size range r;,,, ;7,0 each Cogirgie[;ig;gagii;f; Range(r; mins Ti,mazs Riy 1) 1
distance to hole H; each control point P; of green Less (15,d(H;.end, P;),1) 1
inside green G each flag F; InsideBlob (F;, G;, 30) 1
fairway target location t; each fairway end point P; Eq(0,d(t;, P;),15) 1
distance to hole path H; each fairway control point P; Eq (0, dpatn(P;, Hj), 50) 1
distance to hole path H; each sand trap control point P; Range (17,37, dpan (P;, Hj), 15) 1
outside green G; each control point of sand trap F; OusideBlob (P;, G;,60) 1
sand trap location t; each sand trap control point P; Eq (50,d(t;, P;), 2500) 1
distance between traps each sand trap pairs T}, Tj Greater (50,d(C(T5), C(Ty)),1) 1

Figure 6: Factor functions used in the golf course layout example. d(x,y) denotes distance between two points. dpain(,y) denotes the

distance from a point to a path. C(x) denotes the centroid of the control points of object .



